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1. Introduction

The N = 4 supersymmetric Yang-Mills theory has no mass gap; the spectrum of the theory

extends continuously down to zero energy. This is true not only in Minkowski space, but

also if the theory is considered on R × T 3, where the first factor denotes time and the

second is a spatial three-torus. In the weak coupling limit, the wave functions of the low-

energy states are then supported on the moduli space of flat connections on the gauge

bundle over T 3. (This means that the magnetic field strength is zero.) Generically, these

low-energy states break the gauge group G of the theory to an abelian subgroup, but on

certain subspaces of the moduli space of flat connections, the unbroken subgroup Z may

be of the form

Z ≃ S × U(1)r, (1.1)

where S is a semi-simple group and r is some non-negative integer. Because of the scalar

fields in the N = 4 multiplets associated with the abelian U(1)r factor, the quantum

states will in general not be normalizable; we refer to this as a rank r continuum of states.

The effective low-energy theory associated with the semi-simple factor S is modeled by

supersymmetric quantum mechanics with 16 supercharges based on the Lie algebra s of

the group S [1]. The latter theory is the dimensional reduction to 0 + 1 dimensions of

N = 4 Yang-Mills theory, and is believed to have a linear space Vs of normalizable zero-

energy states [2]. In the Yang-Mills theory, there are thus
∑

s dimVs continua of rank r

of low-energy states. These can be further characterized by their discrete abelian ’t Hooft
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fluxes [3]: The magnetic ’t Hooft flux m measures the topological class of the gauge bundle,

and the electric ’t Hooft flux e determines (together with the θ-angle) the transformation

properties of the quantum states under large gauge transformations.

In two previous papers [4, 5], we constructed the low-energy spectrum of normalizable

states for all choices of a simple gauge group G (assuming the spectrum is independent

of the coupling constant). In particular, we showed that the requirement of SL2(Z) S-

duality [6] (under which the ’t Hooft fluxes (m, e) transform as a doublet) determines the

dimensions of the spaces Vs for all semi-simple Lie algebras s (almost) uniquely: dimVs

equals the number of distinguished markings of the corresponding Dynkin diagram. (This

is in agreement with the result obtained by considering a mass-deformed version of the

N = 4 quantum mechanics and assuming that the states are independent of the mass

perturbation [7].)

In this paper, we refine the analysis of the spectrum by also examining the behavior of

the states under the SL3(Z) mapping class group of the spatial T 3: For given values of the

’t Hooft fluxes m and e, the corresponding space of quantum states may be decomposed

as a direct sum of irreducible unitary representations R of the stability subgroup of the

mapping class group that leaves m and e invariant. The spectrum of degeneracies of such

representations should be invariant under S-duality acting on m and e, but this is not at

all manifest in the present formulation of the theory. We believe that it should eventually

be possible to give a simpler proof of this invariance under S-duality, valid for continua of

states of arbitrary rank r and all gauge groups G. Such a result is likely to give additional

insight into the structure of the theory. Here, we proceed in a more pedestrian way, though,

and limit ourselves to truly normalizable zero-energy states, i.e. the r = 0 case, and the

S-dual pair G = Spin(2n+1) and G = Sp(2n). (The case G = SU(n) is rather trivial [4]:

For given values of m and e, there is at most one state, and this transforms trivially under

the stability subgroup of the mapping class group. We also have some partial results for

the G = Spin(2n) cases, but as they shed no particular further light on the underlying

structure, we have chosen not to present them here. The cases when G is an exceptional

Lie group appear to be technically complicated, but should otherwise pose no particular

problems. However, it would probably be more worthwhile to try to understand the general

structures, rather than proceeding in a case-by-case manner.)

After a short description of the general aspects of the theory in section two, we compute

the spectrum of bound states of the Spin(2n+1) and Sp(2n) theories in sections three and

four respectively. The results are then compared in section five, and found to agree with the

predictions of S-duality. The proof reveals surprising connections to subtle combinatorial

identities related to infinite product expressions for theta functions. The deeper meaning

of this is still unclear to us.

2. General considerations

Let G be the gauge group with center subgroup C. By choosing a specific basis of three

primitive one-cycles on T 3, the isomorphism class of a principal G/C bundle over T 3 (the
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gauge bundle) may be specified by a triple

m = (m23,m31,m12) ∈ C3, (2.1)

where mij = m−1
ji ∈ C is identified with the restriction of the discrete abelian magnetic ’t

Hooft flux to a two-torus in the ij-plane. It is sometimes convenient to use the dual notation

m = (m1,m2,m3) ∈ C3. (2.2)

A flat connection on such a bundle is determined by its holonomies along the non-trivial

cycles of the torus, i.e. by a triple

U = (U1, U2, U3) ∈ G3, (2.3)

subject to the almost commutation relations

UiUjU
−1
i U−1

j = mij. (2.4)

Let [U ] denote the equivalence class of U modulo simultaneous (gauge) conjugation of the

Ui by some element of G. For a detailed description of the structure of the moduli space

of flat connections, see [8].

For an almost commuting triple U , we let Z ⊂ G denote its centralizer (the unbroken

gauge group), i.e. the subgroup of elements that commute with the Ui. For simplicity,

we will in this paper only be concerned with U such that Z = S is semi-simple, i.e. we

will not consider continua of non-zero rank r. For such a U , we let ∆ be the finite set

of distinguished markings of the Dynkin diagram associated to the Lie algebra s of S.

As described in the introduction, there is a linear space Vs of normalizable zero-energy

states in the supersymmetric quantum mechanics with 16 supercharges based on s. Vs

has an orthonormal basis in one-to-one correspondence with the elements of ∆. For a

fixed isomorphism class of semi-simple centralizer Z, we then get a linear space VZ of

normalizable zero-energy states with an orthonormal basis of elements denoted |[U ], δ〉.
Here [U ] is a conjugacy class of an almost commuting triple with semi-simple centralizer

isomorphic to Z, and δ ∈ ∆. The total space V of bound states is the direct sum of the

spaces VZ , where the sum runs over all possible semi-simple centralizers Z ⊂ G.

The C3 group of G/C gauge transformations with a non-trivial winding around the

cycles of T 3 is a module of the SL3(Z) mapping class group of T 3, so we may form the

semi-direct product

Ω̂ = SL3(Z) ⋉ C3. (2.5)

This group (almost) acts by permutations on the set of U , and this action preserves the

centralizer Z: The action of the first factor (the mapping class group) is induced from the

action on the homology of T 3, so that the group element

A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






∈ SL3(Z) (2.6)
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acts according to






U1

U2

U3






7→







Ua11

1 Ua12

2 Ua13

3

Ua21

1 Ua22

2 Ua23

3

Ua31

1 Ua32

2 Ua33

3






. (2.7)

(This is well-defined if U is a commuting triple, but for an almost commuting triple we

need to consider U modulo conjugation by elements of the finite group generated by the

Ui. Such conjugations act trivially on the centralizer Z.) This implies that the components

of m transform as a triplet under SL3(Z). The action of the second factor in (2.5) is






U1

U2

U3






7→







c1U1

c2U2

c3U3






, (2.8)

where ci ∈ C. Both factors act trivially on δ. This action on U and δ descends to an action

on pairs ([U ], δ), which however may be non-trivial also on δ. Indeed, a choice of preferred

representatives U for the classes [U ] is in general not preserved by the action of Ω̂, so each

such transformation must be accompanied by a suitable conjugation in G. This defines

an automorphism of Z, which, modulo conjugation in Z, determines a Dynkin diagram

automorphism acting on δ.

The action of Ω̂ on the pairs ([U ], δ) induces a linear action on the vector space V of

normalizable zero-energy states. We begin the analysis of this action by considering the

factor C3 in Ω̂. An irreducible linear representation of C3 is determined by a triple (the

discrete abelian electric ’t Hooft flux)

e = (e1, e2, e3) ∈ C̃3 ≃ C3, (2.9)

transforming in the same way as m under SL3(Z). Here we have used the (in this context

canonical) isomorphism between the finite abelian group C and its dual C̃ = Hom(C,U(1)).

We may thus decompose the space V of normalizable zero-energy states as a direct sum of

subspaces, each of which is characterized by an orbit of SL3(Z) on the set of ordered pairs

(m, e) ∈ C3 × C3, together with an irreducible representation R of the ‘little’ subgroup

Ωm,e ⊂ SL3(Z) stabilizing some chosen pair on that orbit. We let NR
m,e(G) denote the mul-

tiplicity of such representations. The SL2(Z) S-duality group is expected to commute with

the SL3(Z) mapping class group and transforms the pair (m, e) as a doublet. Invariance of

the spectrum under S-duality thus amounts to the conditions

NR
c,c′(G) = NR

c′,c−1(G
′)

NR
c,c′(G) = NR

c,cc′(G), (2.10)

where G′ denotes the Langlands or GNO dual group of G/C. It is not obvious that the

spectrum fulfills these conditions, but in the following sections we will check this explicitly

for the S-dual pairs of theories with gauge groups Spin(2n + 1) and Sp(2n).

It should be noted that NR
m,e(G) necessarily vanishes for certain combinations of m

and e: For a given m ∈ C3, multiplication of a triple U = (U1, U2, U3) by (m1i,m2i,m3i)

for some i = 1, 2, 3 is equivalent to conjugation by Ui, and thus acts trivially on the space
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of states. The possible values of e ∈ C̃3 are thus those that obey e1(m1i)e2(m2i)e3(m3i) =

1 ∈ U(1). (This notation means that the components of e are evaluated on the components

of m.) Evaluating this equation for i = 1, 2, 3, and using the dual notation for m, gives

three equations that can be summarized as

eimj = ejmi (2.11)

for all i, j = 1, 2, 3. The multiplicity NR
m,e(G) can thus be non-zero only for m and e

fulfilling this S-duality covariant constraint.

It should also be noted that, although the infinite discrete group Ω̂ has infinitely many

inequivalent representations, only finitely many of these will appear. The reason is that the

holonomies Ui with semi-simple centralizers are of finite order in G (i.e. a finite power of Ui

equals the identity element). There is therefore a normal subgroup Ω̂0 of finite index in Ω̂

that acts trivially on the holonomies, so all representations of Ω̂ that appear are pullbacks

of representations of the finite quotient group

Γ = Ω̂/Ω̂0. (2.12)

Representation theory of finite groups will therefore play a central role in our analysis;

for some background material on such groups see e.g. [9]. To decompose the space V of

normalizable zero-energy states as a direct sum of irreducible representations of Γ, we can

proceed as follows: For γ ∈ Γ we let [γ] denote its conjugacy class, i.e. the set of elements

obtained from γ by conjugation by elements of the group. The cardinality of [γ] is denoted

d[γ], so that

d =
∑

[γ]

d[γ], (2.13)

where the sum runs over all conjugacy classes, equals the order of Γ. For each irreducible

unitary representation R of Γ and each conjugacy class [γ], the character of R evaluated

on [γ] is given by TrR(γ), where γ is a representative of [γ]. The multiplicity NR of the

representation R in the decomposition of V now follows from the orthogonality properties

of the characters, and is given by the formula

NR =
1

d

∑

[γ]

d[γ]TrV (γ)TrR(γ), (2.14)

where the sum again runs over all conjugacy classes. It follows from the structure of V

as described above, that the trace TrV (γ) equals the number of pairs ([U ], δ) fixed by the

action of γ. This means that [U ] should be invariant under γ, and that δ should be invariant

under the Dynkin diagram automorphism induced by γ as described above.

3. The G = Spin(2n + 1) theories

In this section we discuss the G = Spin(2n+1) theories; see [4] for relevant background

material. As discussed in the introduction, the bound states arise at points in the moduli
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space of flat connections where the unbroken gauge group is semi-simple. Possible such

semi-simple centralizers are of the form [10, 11, 4]

z ≃ so(k0) ⊕ so(k1) ⊕ . . . ⊕ so(k7) , (3.1)

where k0 + k1 + · · · k7 = 2n + 1. One may think of k1, . . . , k7 as being associated with

the points of the Fano plane, i.e. the non-zero points of Z
3
2 (which can be viewed as the

corners of a cube). When m ∈ C3 ≃ Z
3
2 is trivial, there are two possibilities [10]: Either

k0 is even and the ka for a = 1, . . . , 7 are odd, or vice versa. When m ∈ C3 ≃ Z
3
2 takes

one of the seven non-trivial values, it determines one of the seven lines of the Fano plane.

Again there are two possibilities: Either the ka associated to the three points of that line

are even whereas k0 and the remaining four ka are odd, or vice versa. In all cases, the

images of the corresponding commuting triples in G/C ≃ SO(2n + 1) may be represented

by the diagonal matrices

Ū1 = diag(1lk0
,−1lk1

, 1lk2
,−1lk3

, 1lk4
,−1lk5

, 1lk6
,−1lk7

)

Ū2 = diag(1lk0
, 1lk1

,−1lk2
,−1lk3

, 1lk4
, 1lk5

,−1lk6
,−1lk7

) (3.2)

Ū3 = diag(1lk0
, 1lk1

, 1lk2
, 1lk3

,−1lk4
,−1lk5

,−1lk6
,−1lk7

)

The order of the above holonomies Ūi in G/C is 1 or 2 so that U2
i ∈ C. In a sector with a

fixed value of e, it is therefore sufficient to consider the action on the holonomies of a finite

group Γ defined as the reduction modulo 2 of the stability group Ωm,e ⊂ SL3(Z).

There are 23 = 8 different liftings of a triple from SO(2n+1) to Spin(2n+1), related by

multiplication with elements of C3, but generically these define the same holonomy modulo

conjugation. This means that the corresponding states all have e trivial. However, if the

four ka associated with the points that do not belong to a certain line of the Fano plane

are zero, then multiplication by the corresponding non-trivial element of C3 changes the

equivalence class of the triple. There will then be a further set of states with a corresponding

non-trivial value of e [4].

It follows that for m ∈ C3 trivial, all values of e ∈ C3 are possible. A non-trivial

value of e only appears when k0 is odd, the four ka associated with points not in the

corresponding line are zero, and the three ka associated with points in that line are even.

For m ∈ C3 non-trivial, e is either trivial or equal to m. The latter case appears only when

k0 is even, the four ka associated with points not in the corresponding line are zero, and

the remaining three ka are odd. These pairs (m, e) ∈ C3 × C3 are precisely those allowed

by (2.11), as displayed in table 1, where 0 denotes the trivial element of Z
3
2 and c is one of

the seven non-trivial elements. We have also indicated the relevant finite quotient Γ of the

stability group Ωm,e. It acts on the holonomies by permuting the ka. (For (m, e) = (0, c)

one might think that the relevant group is SL2(Z2)⋉Z
2
2, but the second factor acts trivially

on the holonomies.)

It is advantageous to consider all values of the rank of the gauge group, n, simultane-

ously: The number of distinguished markings of the so(k) Dynkin diagram, i.e. dimVso(k),

equals the number of partitions of k into distinct odd parts [7], and this is most easily

– 6 –
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(m, e) Γ

(0, 0) SL3(Z2)

(0, c) SL2(Z2)

(c, 0) SL2(Z2) ⋉ Z
2
2

(c, c) SL2(Z2) ,

Table 1: Possible ’t Hooft fluxes and the corresponding finite groups.

described by the generating function

P (q) =

∞
∑

k=1

qk dimVso(k) =

∞
∏

k=1

(1 + q2k−1) , (3.3)

which we decompose into its even and odd powers Peven = 1
2(P (q) + P (−q)) and Podd =

1
2 (P (q) − P (−q)), respectively. So rather than directly determining the multiplicities of

bound states transforming in the unitary representation R of Γ, denoted by MR
m,e in this

section, we will work with the generating functions

MR
m,e(q) =

∞
∑

n=1

q2n+1MR
m,e . (3.4)

These functions can be computed by a formula analogous to (2.14):

MR
m,e(q) =

1

d

∑

[γ]

d[γ]T
[γ]
m,e(q)TrR(γ) , (3.5)

where

T [γ]
m,e(q) =

∞
∑

n=0

q2n+1TrV (γ) . (3.6)

In the latter formula, the trace is over the space V of normalizable zero-energy states in

the (m, e)-sector of the Spin(2n + 1) theory.

We will now carry out these computations for all possible values of m and e separately.

3.1 The (m, e) = (0, 0) states

The group Γ = SL3(Z2) is of order d = 168. The values of TrR(γ) are given in the character

table 2, where c = 1
2

(

−1 − i
√

7
)

and c̄ is its complex conjugate. We have denoted the

representations by their dimensionality in bold face, and the conjugacy classes by their

cycle structure when acting on the seven ka. From the above considerations follows that

T 1
7

0,0(q) = Podd(q)P 7
even(q) + Peven(q)P 7

odd(q)

T 1
3
2
2

0,0 (q) = Podd(q)P 3
even(q)P 2

even(q2) + Peven(q)P 3
odd(q)P 2

odd(q2)

T 124

0,0 (q) = Podd(q)Peven(q)Peven(q2)Peven(q4) + Peven(q)Podd(q)Podd(q2)Podd(q4)

T 13
2

0,0 (q) = Podd(q)Peven(q)P 2
even(q3) + Peven(q)Podd(q)P 2

odd(q3)

T 7

0,0(q) = Podd(q)Peven(q7) + Peven(q)Podd(q7)

T 7
′

0,0(q) = Podd(q)Peven(q7) + Peven(q)Podd(q7). (3.7)
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conj.class 17 13 22 124 132 7 7′

cardinality 1 21 42 56 24 24

1 1 1 1 1 1 1

6 6 2 0 0 −1 −1

7 7 −1 −1 1 0 0

8 8 0 0 −1 1 1

3 3 −1 1 0 c̄ c

3̄ 3 −1 1 0 c c̄

Table 2: Character table for SL3(Z2).

conj.class 13 12 3

cardinality 1 3 2

1 1 1 1

1′ 1 −1 1

2 2 0 −1

Table 3: Character table for SL2(Z2).

The first (second) term in each expression corresponds to k0 being odd (even) and the ka

being even (odd). The generating functions MR
0,0(q) are obtained through (3.5). As an

example we give the resulting expression for the six-dimensional representation (here we

have also used the second identity in (5.5)):

M6

0,0 = 1
3584P (q)8 + 1

128P (q)4P (q2)2 + 3
256P (q)4P

(

−q2
)2

+ 1
32P (q)2P

(

−q2
)

P
(

−q4
)

+ 1
7P (q)P

(

q7
)

− (q ↔ −q) . (3.8)

Note that
∑

R dim RMR
0,0(q) reproduces the result in [4] as required for consistency.

3.2 The (m, e) = (0, c) states

The group Γ = SL2(Z2) ≃ S3 (the symmetric group on three elements) is of order d = 6.

In the character table 3, we have denoted the conjugacy classes by their cycle structure on

the three non-zero ka. The ka are necessarily even, and k0 is odd. It follows that

T 1
3

0,c (q) = Podd(q)P 3
even(q)

T 12

0,c (q) = Podd(q)Peven(q)Peven(q2)

T 3

0,c(q) = Podd(q)Peven(q3) . (3.9)

The generating functions MR
0,c(q) follow from (3.5).

3.3 The (m, e) = (c, 0) states

The group Γ = SL2(Z2) ⋉ Z
2
2 ≃ S4 (the symmetric group on four elements) is of order

d = 24 with character table 4. The two entries in the notation for the conjugacy classes

– 8 –
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conj.class (13,14) (13,22) (12,12 2) (12,4) (3,13)

cardinality 1 3 6 6 8

1 1 1 1 1 1

1′ 1 1 −1 −1 1

2 2 2 0 0 −1

3 3 −1 1 −1 0

3′ 3 −1 −1 1 0

Table 4: Character table for SL2(Z2)〈Z2

2
.

refer to to the cycle structures on the three ka in the line on the Fano plane and the four

remaining ka respectively. We get

T
(13,14)
c,0 (q) = P 3

odd(q)P 5
even(q) + P 3

even(q)P 5
odd(q)

T
(13,22)
c,0 (q) = P 3

odd(q)Peven(q)P 2
even(q2) + P 3

even(q)Podd(q)P 2
odd(q2)

T
(12,12

2)
c,0 (q) = Podd(q)Podd(q2)P 3

even(q)Peven(q2) + Peven(q)Peven(q2)P 3
odd(q)Podd(q2)

T
(1 2,4)
c,0 (q) = Podd(q)Podd(q2)Peven(q)Peven(q4) + Peven(q)Peven(q2)Podd(q)Podd(q4)

T
(3,13)
c,0 (q) = Podd(q3)P 2

even(q)Peven(q3) + Peven(q3)P 2
odd(q)Podd(q3), (3.10)

where the first (second) term in each expression corresponds to the three ka in the line on

the Fano plane being odd (even) and the four remaining ka together with k0 being even

(odd). The generating functions MR
c,0(q) follow from (3.5).

3.4 The (m, e) = (c, c) states

The group Γ = SL2(Z2) ≃ S3 is the same as in the (m, e) = (0, c) case, but now the three

non-zero ka are odd, and k0 is even. It follows that

T 1
3

c,c (q) = Peven(q)P 3
odd(q)

T 12

c,c (q) = Peven(q)Podd(q)Podd(q2)

T 3

c,c(q) = Peven(q)Podd(q3). (3.11)

The generating functions MR
c,c(q) follow from (3.5).

4. The G = Sp(2n) theories

In this section we perform an analysis of the Sp(2n) theories, similar to the one carried

out for the Spin(2n+1) theories in the previous section (see [4] for relevant background

material). It turns out that it is convenient to treat all e values together; we therefore split

the analysis into two cases, m = 0 and m 6= 0.

4.1 The m = 0 states

The bound states with m = 0 arise from semi-simple centralizers of the form [1, 4]

z ≃ sp(2k1) ⊕ sp(2k2) ⊕ · · · ⊕ sp(2k8) , (4.1)
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conj.class 18 1422 24 24′ 1232 1224 26 17 17′ 42 42
′

cardinality 1 42 42 7 224 168 224 192 192 168 84

1 1 1 1 1 1 1 1 1 1 1 1

3 3 -1 -1 3 0 1 0 c c̄ 1 -1

3̄ 3 -1 -1 3 0 1 0 c̄ c 1 -1

6 6 2 2 6 0 0 0 -1 -1 0 2

7 7 -1 -1 7 1 -1 1 0 0 -1 -1

8 8 0 0 8 -1 0 -1 1 1 0 0

1 · 7 7 3 -1 -1 1 1 -1 0 0 -1 -1

1′ · 7 7 -1 3 -1 1 -1 -1 0 0 1 -1

2 · 7 14 2 2 -2 -1 0 1 0 0 0 -2

3 · 7 21 1 -3 -3 0 -1 0 0 0 1 1

3′ · 7 21 -3 1 -3 0 1 0 0 0 -1 1

Table 5: Character table for SL3(Z2)〈Z3

2
.

where
∑

i ki = n. One may think of k1, . . . , k8 as being associated with the eight corners of

a cube, or equivalently Z
3
2 (see [4] for more details). The corresponding commuting triples

may be represented by the diagonal matrices [4]

U1 = diag(1l2k1
,−1l2k2

, 1l2k3
,−1l2k4

, 1l2k5
,−1l2k6

, 1l2k7
,−1l2k8

) ,

U2 = diag(1l2k1
, 1l2k2

,−1l2k3
,−1l2k4

, 1l2k5
, 1l2k6

,−1l2k7
,−1l2k8

) , (4.2)

U3 = diag(1l2k1
, 1l2k2

, 1l2k3
, 1l2k4

,−1l2k5
,−1l2k6

,−1l2k7
,−1l2k8

) .

Since U2
i = 1 the action of SL(3, Z) is reduced to SL(3, Z2). The large gauge transforma-

tions act as reflections in the cube language and induce the natural SL(3, Z2) action on

e = (e1, e2, e3). These facts imply that the natural group to use to classify the m = 0

states is SL(3, Z2) ⋉ Z
3
2. This group has order 1344 and its character table is found in ta-

ble 5,1 where c = 1
2

(

−1 − i
√

7
)

and c̄ is its complex conjugate. The non-trivial large gauge

transformations constitute the conjugacy class 24
′

of cardinality 7. We see that these act

trivially, i.e. imply e = 0, on the first six representations, which therefore can be identified

with representations of the SL3(Z2) stability group. The last five representations contain

the states where e takes one of the 7 non-zero values. We denote these representations as

R · 7, where R is a representation of the SL2(Z2) ⋉ Z
2
2 ≃ S4 stability group.

Just as for Spin(2n+1), it is convenient to consider all values of n simultaneously. In-

deed, the number of distinguished markings of the sp(2k) Dynkin diagram, i.e. dimVsp(2k),

equals the number of partitions of 2k into distinct even parts. This is most easily described

by the generating function

Q(q) =

∞
∑

k=1

q2k dim Vsp(2k) =

∞
∏

n=1

(1 + q2n) . (4.3)

1This table is derived in [12], or can be obtained using the GAP computational algebra system [13].
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We can then associate a generating function to each conjugacy class:

T 1
8

m=0 = q Q(q)8 ,

T 1
4
2
2

m=0 = q Q(q)4Q(q2)2 ,

T 2
4

m=0 = q Q(q2)4 ,

T 2
4′

m=0 = q Q(q2)4 ,

T 1
2
3
2

m=0 = q Q(q)2Q(q3)2 ,

T 1
2
24

m=0 = q Q(q)2Q(q2)Q(q4) ,

T 26

m=0 = q Q(q2)Q(q6) ,

T 17

m=0 = q Q(q)Q(q7) ,

T 17
′

m=0 = q Q(q)Q(q7) ,

T 4
2

m=0 = q Q(q4)2 ,

T 4
2′

m=0 = q Q(q4)2 , (4.4)

where the prefactor q is introduced to facilitate the comparison with the Spin(2n+1) results

of the previous section. The generating functions for the number of states transforming in

the various unitary representations can be computed by a formula analogous to (3.5):

NR
m=0(q) =

1

d

∑

[γ]

d[γ]T
[γ]
m=0(q)TrR(γ) . (4.5)

As an example, we write explicitly the generating function for the (e,m) = (0, 0) states

transforming in the 6 of SL3(Z2):

N6

0,0(q) =
q

224

(

Q(q)8+14Q(q)4Q(q2)2+21Q(q2)4+28Q(q4)2−64Q(q)Q(q7)
)

. (4.6)

4.2 The m 6= 0 states

The bound states with m 6= 0 arise from semi-simple centralizers of the form [11, 4]

Z ≃ so(k1) ⊕ so(k′
1) ⊕ sp(2k2) ⊕ sp(2k′

2) ⊕ · · · ⊕ sp(2k4) ⊕ sp(2k′
4) . (4.7)

One may think of the ki and the k′
i as being associated with the points of two parallel

planes (determined by m) on a cube. The corresponding holonomies can be found in

[4, 11]. They are at most of order 2, so just as for m = 0, only the mod 2 reduction of the

SL3(Z) mapping class group is relevant. Furthermore the Z
2
2 factor of the SL2(Z2) ⋉ Z2

2

stability subgroup of m acts trivially on the holonomies, so we need only consider the group

SL2(Z2). Including also the non-trivial large gauge transformations, we are led to consider

the finite group

Γ = SL2(Z2)×Z2 , (4.8)

of order d = 12. In the character table 6, the first (second) entry in the notation for the

conjugacy classes indicates the cycle structure on k1 and k′
1 (k2, k3, k4 and k′

2, k′
3, k′

4). The

non-trivial large gauge transformation constitutes the (2,23) conjugacy class of cardinality

1. It is trivially represented on the first three representations, which thus have e = 0, and
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conj.class (12,16) (12,1222) (12,32) (2,23) (2,23)′ (2,6)

cardinality 1 3 2 1 3 2

10 1 1 1 1 1 1

1′
0

1 -1 1 1 -1 1

20 2 0 -1 2 0 -1

1m 1 1 1 -1 -1 -1

1′
m

1 -1 1 -1 1 -1

2m 2 0 -1 -2 0 1

Table 6: Character table for SL2(Z2) × Z2.

non-trivially represented on the last three representations, which thus have e = m. The

generating functions associated with the conjugacy classes are

T
(12,16)
m6=0 = qP (q2)2Q(q2)6 ,

T
(12,12

2
2)

m6=0 = qP (q2)2Q(q2)2Q(q4)2 ,

T
(12,32)
m6=0 = qP (q2)2Q(q6)2 , (4.9)

T
(2,23)
m6=0 = qP (q4)Q(q4)3 ,

T
(2,23)′

m6=0 = qP (q4)Q(q4)3 ,

T
(2,6)
m6=0 = qP (q4)Q(q12) .

The generating functions for the unitary representations are obtained as in (4.5).

5. S-duality

The requirements of S-duality are easy to verify by expanding out the expressions obtained

in the previous sections for MR
m,e(q) and NR

m,e(q) as power series in q. One finds that

M1

0,0 = N1

0,0 = q + q3 + 2q5 + 4q7 + 8q9 + 13q11 + 26q13 + 44q15 + 80q17 + · · ·
M3

0,0 = N3

0,0 = 2q15 + 7q17 + · · ·
M 3̄

0,0 = N 3̄

0,0 = 2q15 + 7q17 + · · ·
M6

0,0 = N6

0,0 = q5 + 2q7 + 7q9 + 14q11 + 34q13 + 68q15 + 146q17 + · · ·
M7

0,0 = N7

0,0 = q11 + 6q13 + 16q15 + 43q17 + · · ·
M8

0,0 = N8

0,0 = q9 + 4q11 + 12q13 + 32q15 + 80q17 + · · ·
M1

0,c = N1

c,0 = q + q3 + 2q5 + 3q7 + 7q9 + 10q11 + 19q13 + 29q15 + 50q17 + · · ·
M1

′

0,c = N1
′

c,0 = q11 + 3q13 + 7q15 + 13q17 + · · ·
M2

0,c = N2

c,0 = q5 + 2q7 + 5q9 + 9q11 + 18q13 + 31q15 + 57q17 + · · ·
M1

c,0 = N1

0,c = q3 + 2q5 + 6q7 + 12q9 + 27q11 + 55q13 + 112q15 + 215q17 + · · ·
M1

′

c,0 = N1
′

0,c = q9 + q11 + 7q13 + 16q15 + 47q17 + · · ·
M2

c,0 = N2

0,c = q5 + 2q7 + 7q9 + 18q11 + 45q13 + 100q15 + 222q17 + · · ·
M3

c,0 = N3

0,c = 2q7 + 6q9 + 19q11 + 46q13 + 116q15 + 257q17 + · · ·
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M3
′

c,0 = N3
′

0,c = q9 + 5q11 + 18q13 + 52q15 + 137q17 + · · ·
M1

c,c = N1

c,c = q3 + q5 + 3q7 + 5q9 + 10q11 + 16q13 + 29q15 + 45q17 + · · ·
M1

′

c,c = N1
′

c,c = q9 + q11 + 4q13 + 7q15 + 15q17 + · · ·
M2

c,c = N2

c,c = q5 + 2q7 + 4q9 + 9q11 + 17q13 + 31q15 + 55q17 + · · · ,

where c is an arbitrary non-trivial element of Z
3
2. This means e.g. that for each non-trivial

c ∈ Z
3
2, the m = 0, e = c states of the Spin(17) theory comprise 57 doublets of the SL2(Z2)

stability subgroup of the mapping class group.

It is actually possible to prove these identities to all orders in q; the analysis reveals a

rich structure of combinatorial infinite product identities dating back to Euler, Ramanujan

and others. S-duality between the m = 0 states in the Sp(2n) theory and the e = 0 states

in the Spin(2n + 1) theory is equivalent to linear combinations of the following identities:

16qQ(q)8 = P (q)8 − (q ↔ −q) ,

8qQ(q)4Q(q2)2 = P (q)4P (q2)2 − (q ↔ −q) ,

4qQ(q)2Q(q3)2 = P (q)2P (q3)2 − (q ↔ −q) , (5.1)

4qQ(q)2Q(q2)Q(q4) = P (q)2P (q2)P (q4) − (q ↔ −q) ,

2qQ(q)Q(q7) = P (q)P (q7) − (q ↔ −q) ,

as well as

8qQ(q2)4 = P (q)4P (−q2)2 − (q ↔ −q) ,

4qQ(q2)Q(q6) = P (q)2P (−q3)2 − (q ↔ −q) , (5.2)

4qQ(q4)2 = P (q)2P (−q2)P (−q4) − (q ↔ −q) .

Before we proceed let us make a few remarks about these identities. The first identity

in (5.1) is Jacobi’s famous aequatio identica satis abstrusa, which also appeared in our

previous paper [4]. The other identities are “SL3(Z2) refinements” of this identity. We note

that identities of the type (5.1) have recently enjoyed a renewed interest in the mathematics

literature. In particular, in the work of Farkas and Kra [14] identity 1, 3 and 5 of (5.1)

above were referred to as ‘a curious property of’ ‘eight’, ‘three’, and ‘seven’, respectively.

In their work, these three identities were treated in a case-by-case manner. The fact that

we have found a connection via SL3(Z2) and S-duality between these and other identities

might be of some interest.

For S-duality between the states with m 6= 0 in the Sp(2n) theory and the e 6= 0 states

in the Spin(2n + 1) theory one similarly needs the identities

8qP (q2)2Q(q2)6 = P (q)4 − (q ↔ −q) ,

4qP (q2)2Q(q2)2Q(q4)2 = P (q)2P (q2) − (q ↔ −q) , (5.3)

2qP (q2)2Q(q6)2 = P (q)P (q3) − (q ↔ −q) ,

as well as

4qP (q4)Q(q4)3 = P (q)2P (−q2) − (q ↔ −q) ,

2qP (q4)Q(q12) = P (q)P (−q3) − (q ↔ −q) . (5.4)
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Note that the above identities can be rewritten using the elementary relations

Q(q2)P (q2) = Q(q) ,

P (−q)P (q) = P (−q2) , (5.5)

together with Euler’s identity

Q(q)P (−q2) = 1 . (5.6)

All of the above identities are special cases of certain identities among theta functions

(they can also be proved starting from entries 29 and 30 in section 16 of [15]). The following

identity

2q h(a, b)
∞
∏

n=1

(a+q2n)

(

1

a
+q2n

)

(b+q2n)

(

1

b
+q2n

)

(ab+q2n)

(

1

ab
+q2n

)

(1+q2n)2 (5.7)

=

∞
∏

n=1

(a+q2n−1)

(

1

a
+q2n−1

)

(b+q2n−1)

(

1

b
+q2n−1

)

(ab+q2n−1)

(

1

ab
+q2n−1

)

(1+q2n−1)2

−
∞
∏

n=1

(a−q2n−1)

(

1

a
−q2n−1

)

(b−q2n−1)

(

1

b
−q2n−1

)

(ab−q2n−1)

(

1

ab
−q2n−1

)

(1−q2n−1)2 ,

where h(a, b) = (1 + a)(1 + b)(1 + 1
ab), follows from the theta function result

θ2(α, q) θ2(β, q) θ2(α + β, q) θ2(0, q) = (5.8)

θ3(α, q) θ3(β, q) θ3(α + β, q) θ3(0, q) − θ4(α, q) θ4(β, q) θ4(α + β, q) θ4(0, q) .

When is the l.h.s. of (5.7) of the form
∏∞

n=1

∏

i(1 + q2nℓi) for integers ℓi with
∑

i ℓi = 8?

It turns out that there are only five solutions to this requirement, namely

(a, b) ∈ {(1, 1), (i, 1), (−eiπ/3 , 1), (−eiπ/4, i), (−eiπ/7,−e9iπ/7)}. (5.9)

The resulting identities precisely correspond to the above expressions (5.1). It is interesting

to note that essentially the same identity (5.7) was also needed to show the equality between

the number of vacuum states in the N = 1∗ mass-deformed N = 4 Sp(2n) and SO(2n)

theories, as required by S-duality [16].

The identity

2 θ2(α + β, q2)θ2(α − β, q2) = θ3(α, q)θ3(β, q) − θ4(α, q)θ4(β, q) , (5.10)

with α = β can be rewritten as

4q
(1 + a2)

a

∞
∏

n=1

(a2 + q4n)

(

1

a2
+ q4n

)

(1 + q4n)2 (5.11)

=

∞
∏

n=1

(

1

a
+ q2n−1

)2

(a + q2n−1)2(1 − q4n−2)2 − (q ↔ −q) .
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For the two parameter choices

a ∈
{

1, eiπ/3
}

, (5.12)

the resulting identities are identical to the first and second entries in (5.2).

From the identity

2θ2(2α, q4) = θ3(α, q) − θ4(α, q) , (5.13)

with α = 0 one easily obtains the final identity in (5.2).

Next we consider the following identity obtained from (5.10)

2q g(a, b)
∞
∏

n=1

(ab + q4n)

(

1

ab
+ q4n

)(

b

a
+ q4n

)

(a

b
+ q4n

)

(1 + q4n)2(1 + q4n−2) (5.14)

=

∞
∏

n=1

(a + q2n−1)

(

1

a
+ q2n−1

)

(b + q2n−1)

(

1

b
+ q2n−1

)

− (q ↔ −q)

where g(a, b) = (1 + 1
ab)(1 + b

a). There are only three choices of the parameters for which

we get integer exponents as above, namely

(a, b) ∈ {(1, 1), (1, i), (1,−eiπ/3)}. (5.15)

The resulting identities precisely correspond to the identities in (5.3).

From the identity (5.13) one deduces

2q
(1 + a2)

a

∞
∏

n=1

(1 + q8n−4)(a2 + q8n)

(

1

a2
+ q8n

)

(1 + q8n) (5.16)

=

∞
∏

n=1

(1 − q4n−2)

(

1

a
+ q2n−1

)

(a + q2n−1) − (q ↔ −q)

There are two parameter choices that we need, namely

a ∈ {−1, eiπ/3}. (5.17)

The resulting expressions reproduce the identities in (5.4). Note that the theta function

identities used here, (5.8), (5.10) and (5.13), are parameter deformations of the identities

(5.51-53) used in [4].
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